The iron exporter ferroportin 1 is essential for development of the mouse embryo, forebrain patterning and neural tube closure.
نویسندگان
چکیده
Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1(ffe/ffe) mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1(ffe/KI) mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.
منابع مشابه
Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos.
Heparan sulphate proteoglycans such as glypicans are essential modulators of intercellular communication during embryogenesis. In Xenopus laevis embryos, the temporal and spatial distribution of Glypican 4 (Gpc4) transcripts during gastrulation and neurulation suggests functions in early development of the central nervous system. We have functionally analysed the role of Xenopus Gpc4 by using a...
متن کاملEffect of arsenic on neural tube in mouse embryo and relation to reduced folate carrier (RFC-1)
Arsenic is an important environmental toxicant which is usually found in drinking water in inorganic form. The hypothesis tested in this investigation is; arsenic exposure causes neural tube defects (NTDs) andthese defects of the central nervous system are more likely related to folate deficiency during fetal life. In this study, sodium arsenate was administered via intraperitoneal route at a r...
متن کاملEffect of retinoic acid on neural tube development in chick embryo
retinoic acid is one of the derivatives of vitamin A.it is used for treatment of dermatitis,but it has different teratogenic effects on developing organs depending on the different stages of embryonic life.neural tube is made of two different parts:primary neural tube originated from embryo germinal layer and and secondary neural tube originated from tail bud.the persent study was designed to ...
متن کاملLRP2/megalin is required for patterning of the ventral telencephalon.
Megalin is a low-density lipoprotein receptor-related protein (LRP2) expressed in the neuroepithelium and the yolk sac of the early embryo. Absence of megalin expression in knockout mice results in holoprosencephaly, indicating an essential yet unidentified function in forebrain development. We used mice with complete or conditional megalin gene inactivation in the embryo to demonstrate that ex...
متن کاملA phenotype-based screen for embryonic lethal mutations in the mouse.
The genetic pathways that control development of the early mammalian embryo have remained poorly understood, in part because the systematic mutant screens that have been so successful in the identification of genes and pathways that direct embryonic development in Drosophila, Caenorhabditis elegans, and zebrafish have not been applied to mammalian embryogenesis. Here we demonstrate that chemica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 18 شماره
صفحات -
تاریخ انتشار 2010